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ABSTRACT 

A two-layer discrete vortex model developed previously is applied to the study of short-term displacements of 
tropical vortexes due to their mutual interaction. The model treats the tropical cells as point-form vortexes and obtains 
analytic solutions for the stream functions in two layers in terms of Hankel functions of zero order. These solutions 
form a system of ordinary differential equations that governs the motion of the vortex filaments of finite strengths 
in the lowei and upper layers. The model can handle a finite number of vortexe? simultaneously. It a1so allows the 
influence of a basic flow to be considered. 

Initially, the model is applied to some analytical data in an attempt to  study the patterns of motion for both 
binary and single tropical vortex systems. It is found that the individual vortexes exhibit a variety of complex trajec- 
tories depending upon their strengths and tilts, and upon stability parameters, p: and fit. Of interest in this study is 
the “self-interaction” concept according to which the upper level circulation of a sloping vortex interacts with the 
lower level circulation. It is shown tha t  the observed short-period oscillations of the surface trajectory of a tropical 
cyclone can be explained t o  a reasonable extent using this concept. A case study is made involving multiple vortexes 
over the North Atlantic Ocean. The results illustrate how mutual interaction influences the motion of individual 
vortexes and further demonstrate the importance of the surrounding vortexes in modifying the well-known cyclonic 
rotation of a binary system. 

Preliminary calculations indicate that the model may provide a useful tool for predicting short-term displace- 
ments of tropical cyc!ones. 

In  the vast oceanic regions of tropical latitudes, one 
often finds two or more closed circulations, some of which 
are of tropical cyclone intensity, existing simultaneously 
in close proximity to  one another. The movement of these 
tropical cells is influenced by their mutual interaction. as 
well as by a steering current in which they may be em- 
bedded. Observations indicate that, when a pair of tropical 
cyclones exist simultaneously in close proximity, they 
generally move around each other in a cyclonic sense when 
the steering flow is weak. This cyclonic rotation of the 
binary tropical cyclones has been commonly known as the 
“Fujiwhara effect” after his studies on vortical systems 
of the atmosphere (Fujiwhara 1923). For a binary vortex 
system, the rate of rotation can be calculated by using an 
expression given by Lamb (1945). Using this expression, 
Haurwitz (1951) studied the motion of some binary tropi- 
cal cyclones of the North Atlantic Ocean; more recently 
Brand (1970) has made similar calculations for some 
binary tropical cyclones of the Western North Pacific 
Ocean. Biehl (1954) discussed a synoptic example of the 
interaction between a tropical vortex pair and indicated 
that external large-scale vortexes commonly present on 
synoptic maps may also influence the motion of the 
pair. Thus, when more than two vortexes are present in 
close proximity, one must use a general expression t o  cal- 
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culate the influence of mutual interaction. Shabbar 
(1968), with a primary interest in extended range fore- 
casting, developed a two-layer atmospheric model in 
which the continuous vorticity distribution is replaced by 
point-form vortexes. Details of this model can be found in 
Shabbar (1968) and Shabbar and Khandekar (1970); it is 
sufficient to  say here that, utilizing this model, a trajectory 
calculation of a vortex could easily be made, taking into 
account its interactions with surrounding vortexes. 

Observational studies on the motion of tropical cyclones 
have revealed that a detailed trajectory of a hurricane 
vortex exhibits a small and rather irregular oscillatory 
motion. From a detailed study of two hurricane tracks, 
Horn (1951) obtained a sinusoidal motion with periods of 
20 and 40 hr;  Senn (1961), making use of a radar film, 
demonstrated oscillatory and irregular motion of hurricane 
centers with a period from half an hour to  1 hr or more. 
Although theoretical studies by Yeh (1950) indicate oscil- 
latory motion of a tropical cyclone with a period of 2 to  
3% days, it  is not clear whether the above-mentioned 
shorter periods can be explianed by a mechanism similar 
to that put forward by Yeh. 

In  this investigation, a two-layer discrete vortex model 
is utilized to study the patterns of vortex motion which 
are generated by mutual interaction. Making use of analyt- 
ical data, we have studied the motions of binary and single 
tropical vortex systems both with and without a basic 
flow. It is found that the individual vortexes exhibit a 
variety of complex traj ectories depending on their strengths, 
tilts, and stability parameters. A vortex having a sloping 
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I '  
FIGURE 1.-The two-layer model used in this study. 

axis is represented in the model by two distinct vortex 
columns as discussed in section 3 ;  this enables the upper 
part of the vortex to interact with the lower part, produc- 
ing "self-interaction." It is further shown that such a tilted 
vortex, when embedded in a uniform easterly current 
moves in a trochoidal path with a period from 1 hr to  
several hours. Finally, we present a case study involving 
multiple vortexes over the North Atlantic with a view to  
exploring the possibility of applying these results to fore- 
casting short-term displacements of tropical cyclones. 

2. THE MODEL 
Figure 1 illustrates an atmosphere with two layers of in- 

compressible, homogeneous, and inviscid fluid with a free 
surface. Let u, v, h, and p be the two horizontal wind 
components, the depth, and the density in each layer, 
respectively. Further, let subscripts 1 and 2 signify the 
lower and upper layers, respectively. 

For each layer, the continuity and momentum equations 
can be written in terms of u, v, h, and p. Consider the 
entire motion as a disturbance of the state of equilibrium 
with equilibrium depths h! and hg. We express, following 
Shabbar (1968), the dependent variables u, u, and h in a 
power series expansion in terms of the Froude number, F, 
with the restraint that F=Uz/gH << 1 (typical magni- 
tudes of U and H pertain to large-scale motions, namely, 
U= 10 m/s and H= 10 km). Equate the coefficients of like 
powers of F and, after some manipulations (Shabbar and 
Khandekar 1970) , the first-order vorticity equations for 
the lower and upper layers are obtained as 

d"' 

d '9 

2 [Vvl-P;(h -h)l =o ( 1 )  

d j  [V"Z + P a l  -#z) I = 0. 

and 

(2) 

Here, 

The superscript (1) refers to  the order of approximation, 
$1 and #z are the stream functions for the two layers, 
p;=jz /ghy(Ap/pJ and p i = f z / g h i ( A p / p l ) .  I n  these ex- 
pressions, f is the Coriolis parameter, its variations in 
the y direction being ignored; A p  is the density difference 
between the lower and the upper layer and A p / p l < d l  for 
this study. 

If one utilizes eq (1) and (2), the movement of a finite 
number of geostrophic point vortexes can be studied in 
an unbounded x-y plane. For this purpose we assume 
that the expressions Vz# l -p~(h -&)  and V Z ~ , + p ~ ( J I 1 -  
qZ) are zero everywhere except in small isolated regions 
that are approximated by point singularities. Thus, the 
continuously distributed potential vorticity field is 
replaced by point-form vortexes. The spirit of the procedure 
is similar to that adopted in classical hydrodynamics 
(Lamb 1945). Morikawa (1962) in his work on prediction 
of hurricane tracks also used a similar concept of a geo- 
strophic point vortex. 

Now imagine that there are n vortexes present both in 
the lower and the upper layer. Let the positions of n 
vortexes in the lower layer be given by (xk, yk) and in the 
upper layer by (X,, Y,) with k running from 1 through n. 
Then we have 

' Y  *. 
n 

vZh -h) = C r3(lr-rkl 1 (3) k=l 

for the lower layer and 

for the upper layer. 

r is the strength of a vortex, 
Here, 6(lr--rk1) and 6(lr-BkI) are Dirac &functions, 

After some manipulations which are outlined in the 
appendix, the stream functions may be obtained as 



84 2 MONTHLY WEATHER REVIEW Vola 99, No. 11 

and typical equation, say for dxl/dt ,  will be written as: 

” 2 r ~ l n k - ~ d .  (6) Here, we have expressed Hci) (5) in terms of KO(%), the 
Bessel function of the first kind, by means of the identity 

2dP:+P; )  k = l  
+ 

Equations (5) and (6) give the values of the stream 
functions in the two layers in terms of Hankel functions 

of zero order, for which the arguments are the 
coordinates of the vortex positions in the lower and upper 
layers. Further, when eq (5 )  and (6) are differentiated 
with respect to x and y ,  we obtain the u and v components 
of a vortex situated at  ( x k / X k ,  y k / Y k )  at which points the 
derivatives are evaluated. We thus obtain a system of 
ordinary differential equations governing the motion of 
vortexes in the two layers: 

and (7) 

These equations define the vortex motion due entirely 
to its interaction with other vortexes. Further, the influence 
of a uniform steering current can easily be taken into 
account. Consider, for example, that the vortexes 
are embedded in a uniform northeasterly current, U ,  
at an angle, a,  to  the north. In this case, the u and v 
components of the vortex are: 

iH(i)  (is) =‘(2/7r)K0(x). Furthermore, Kh(x )  is the deriva- 
tive of K o ( x )  with respect to its argument. With the right 
side being known, eq (9) can be integrated with respect to 
time using a suitable numerical procedure. 

In  this study, we have used Hamming’s (1959) modified 
predictor-corrector method to solve the system of ordinary 
differential equations, eq (9). This is a stable fourth-order 
integration procedure that requires the evaluation of 
the right side of the system only twice per time step. This 
is a great advantage compared with other methods of the 
same order of accuracy, especially the Runge-Kutta 
method which requires the evaluation of the right side 
four times per time step. Secondly, a t  each step the calcu- 
lation procedure gives an estimate of the local truncation 
error; thus, the procedure is able to choose and change the 
step size, At,  so as to maintain a uniform preassigned 
tolerance limit throughout the integration period. Farther, 
the predictor-corrector method is not self-starting; that 
is, the functional values a t  a single previous point are not 
enough to get the functional values ahead. Therefore, a 
special Runge-Kutta method (Ralston 1962) followed by 
one iteration step is used initially to generate the starting 
values. Additional details about the numerical procedure 
may be found in the application program of International 
Business Machines Corp. (1968). 

(8) 3. EXPERIMENTS USING ANALYTICAL DATA 
dY aJ, U sin a; -=--U cos a. d x  -=--- * 

a t  a y  d t  ax  

Similar equations are obtained for the upper layer. 
The total number of ordinary differential equations 

[eq (?)I will depend upon the number of vortexes in each 
layer; that is, with two vortexes in each layer we will have 
a system of eight differential equations (one for each of 
the two coordinates of the four vortex centers) and they 
are ‘as follows : 

Hypothetical data are used to study the patterns of 
vortex motion in some simple and special cases of both 
binary and single vortex systems The locations of the 
vortex centers, the values of the vortex strengths, and the 
parameters p :  and pi are prescribed in each case. We 
have assigned some arbitrary values to  (sl, y l ) ,  ( X l ,  Yl), 
etc., so that the pair of vortexes under consideration are 
separated by a distance.of 1500 km in both layers. The 
vortex strength is estimated by the product of i ts  area and 
average vorticity. The parameters and pz are eval- 
uated from a knowledge of j ,  the Coriolis parameter, 

 XI- -_-- & .  dX2  % z .  d Y i  %2.  dYz  i3#z and representative values of hy, h!, and Aplpl. As men- 
tioned earlier, variations off with latitude were neglected 
and an average value of j representative for 20°N was 
utilized. The value of Ap/p, was taken as lo-’ and the equi- 
librium depths hy and h; were both assumed to be equal to 
5 km. Finally, the set of differential equations was nu- 

_-__ %I. dxz &. , dl/l -=-, &h. dyz -=- %i 

(9) 
d t -  ayl’ dt=-& d t  ax, d t  dxz  

dt ay;’ XC=-2Z7 &t=a’ z=ax,’ 
The right side of each of these equations is obtained by 

differentiating the expressions for the stream functions 
$1 and $2 and evaluating the same at  various points. A 

and 
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merically integrated using a maximum time step of 20 min 
to obtain the following results. 

MOTION OF A BINARY VORTEX SYSTEM 

We consider first a simple configuration of two cyclonic 
vortexes of equal strength in each layer placed along an 
arbitrary z-axis. A value of 5X101' cm2/s is used for the 
vortex strength. This value represents a tropical cyclone 
having a radius of 300 km and an average vorticity of 

Initially, we consider the situation wherein the vortex 
tubes are stretched out vertically from lower layer to  
upper layer with no tilt. This is a special case of a baro- 
tropic fluid with no density stratification. From hydro- 
dynamical considerations (Lamb 1945) it is well known 
that the motion of each vortex is entirely due to the 
other and is always perpendicular to the line joining 
their centers. Since the two vortexes are of equal strength, 
they will always remain at  the same distance from each 
other and will rotate with constant angular velocity 
about the center of the system. The ensuing motion 
is thus a cyclonic rotation in a circle with constant angular 
velocity that is directly proportional to the strength 
of each vortex and inversely proportional to the square 
of the distance separating them. 

In  this configuration, the interaction terms between 
the lower and the upper vortexes do not contribute a t  
any time since the vortex tubes always remain vertical. 
If, however, a vortex slopes with height, the coordinates 
(z,y) of the lower layer vortex will be different from those 
( X , Y )  of the upper layer vortex. This enables the upper 
part of the vortex to interact with the lower part pro- 
ducing "self-interaction." The term self-interaction here 
refers to  the process by which a sloping vortex influences 
its own trajectory at  a particular level by interacting 
with its circulation at  another level. To determine the 
influence of self-interaction on the surface trajectory of 
a tropical vortex, we must have a knowledge of the slope 
of such a vortex. It is difficult to estimate the slope of 
the axis of a mature tropical cyclone. If the slope were 
appreciable, many of the present observational studies 
would have diagnosed it. Mainly due to  lack of firm 
observational evidence, it is commonly assumed that 
the axis is vertical. This, however, does not preclude 
the possibility that a slight slope might exist. T o  the 
authors' knowledge, Simpson (1947) is one of the earliest 
t o  provide some information on the slope of the axis 
of a tropical cyclone. He conceded that some inaccuracy 
might exist in the slope he presented. According to him, 
the axis of the Florida hurricane of 1946 appeared to be 
truly vertical from the surface to about 4550 m (15,000 ft), 
showed a tilt slightly to  the rear up to 6100 m (20,000 ft), 
and tilted thereafter in the opposite direction so that the 
center at  7600 m (25,000 ft) was separated from the 
surface center by- as much as 160 km (100 mi). In  this 
study, we assume the axis of a mature tropical cyclone 

2x 10-4s-1. 

INTERFACE 

FIGURE 2.-Representation of a vortex column 
in the two-layer model. 

FIGURE 3.-Motion of a binary vortex system with (solid lines) and 
without (dashed lines) a steering current. The strength of the 
vortex at B is arbitrarily assigned to be twice that of the vortex 
at A. 

to be slightly tilted in the upper level as shown (on an 
exaggerated scale) in figure 2. In  this case, the vortex 
column AB will be represented mathematically by two 
vertical columns at  positions (s,,yj) and (X,,Y,) in the 
lower and upper layers, respectively. With such an 
arrangement, we will have nonzero interactions between 
the vortexes of the lower and upper layers. In  the calcu- 
lations for the model, the vortex axis is assumed to be 
tilted in such a way as to  separate the vortex centers in 
the lower and upper layer by a horizontal distance of 
50 km. (The actual magnitude of the tilt of the axis is 
not critical. What is required is the separation of the 
vortex centers in the two layers by a finite amount? 
Further, we have assigned the strength of one vortex to  
be twice that of the other vortex; that is, 1?:=5X10" 
and I$= 1 X lot2. (For the corresponding two vortexes 
in the upper layer, slightly smaller values of strengths 
are assigned.) With these modifications, the model is 
integrated without a basic flow for a period of 24 hr. 
The displacement of the vortexes in the lower layer 
is shown in figure 3 (dashed lines). We see that the vor- 
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TABLE 1.-Values of strength and tilt of the vorlez column for the 
trajectories of jigure 4 

Trajectory Tilt Strength Period 

TOP 
Center 
Bottom 

I 
24 16 n 

TIME(-I c 
x -  

i, 
I i  

I I 
24 16 8 

T~ME Ihoursl-  

0 

FIGURE 4.-(A) trajectories of vortex motion using various values 
of strength and tilt; and (B) corresponding speed versus time 
curves (see table 1 for details). 

texes rotate in a cyclonic sense with the weaker one 
(located at  A with r:=5XlO") moving away from the 
circular path. Further, the weaker vortex describes a 
sinusoidal trajectory, while the stronger one (at B) 
describes a trochoidal path with distinct loops. This 
oscillatory motion of each vortex is attributed to the 
tilt in the axis of the vortex as it stretches out from lower 
layer to upper layer. 

As a next step, we consider the pair of vortexes to be 
embedded in a uniform easterly flow of 3 m/s. As such, we 
use the set of equations given by eq (8) and integrate them 
as before to  obtain the vortex displacements shown by the 
solid lines of figure 3. The basic pattern is still the same as 
before; however, the trajectory of each vortex is modified 
due to  the steering flow. The weaker vortex (at A) appears 
to move farther away from the circular path. while the 
stronger one moves in a trochoidal path with the distance 
between successive loops increasing with time as the 
influence of the steering flow increases. As the speed of the 
steering current increases, it is found that the cyclonic 
rotation of the vortex at  B is so much modified that it 
eventually starts drifting in the direction of the steering 
flow. 

MOTION OF A SINGLE VORTEX EMBEDDED 
BN A MNlFORM EASTERLY CURRENT 

As before, we have assumed the axis of the vortex to be 
slightly tilted in the upper layer. For the purpose of nu- 
merical experiments, we have used a number of different 
values for the tilt of the vortex as well BS for the strength 
of the vortex. In  all cases, the basic pattern of motion is 
trochoidal in the direction of the steering current. Figure 
4A shows three different trajectories of a single vortex 
obtained for appropriate values of the tilt and the strength 

of the vortex. For all three cases, a uniform easterly current 
of 5 m/s is used. The corresponding speed versus time 
curves are shown in figure 4B. The top trajectory has a 
period of 11.5 hr, the center trajectory has a period of 6 hr, 
while the bottom trajectory has a period of 2.3 hr. The 
values of the tilt and the strengths used in obtaining these 
trajectories we given in table 1 .  

From these and various other experiments conducted 
in this connection it is found that: (1) the period increases 
as the tilt of the vortex is increased; (2) the period 
decreases as the strength of the vortex is increased; (3) 
the period is not altered by variations in the speed of 
the steering current, but the distance between loops 
along the trochoidal path is increased; and finally (4) 
the increase in p: and pi (decrease in the static stability) 
gives rise to an unstable and irregular motion for the 
vortex center. [The parameters p: and pz can be increased 
by either decreasing the static stability, Aplp,, or by 
decreasing thc equilibrium depths ILy and @. A detailed 
discussion regarding the effect of the variation of param- 
eters pT and p: on vortex motion is given in Shabbar 
and Khandekar (1970) .] 

This oscillatory motion of the vortex center appears 
to be in close agreement with observations of small-scale 
hurricane movement reported by Horn (1951) and Senn 
(1961). Periodic looping of a hurricane center has also 
been reported in some other studies (e.g., Jordan and 
Stowell 1955). In  Eorn's study of hurricane tracks, a 
period of 20 hr and more is suggested, but Senn's study 
with the help of radar films indicates a period from half 
an hour to an houi or so. Our experiments with analytical 
data have indicated that a periodic motion from 1 hr to  
about 24 hr can be obtained by suitable variations of the 
strength and the tilt of the vortex. This oscillatory motion 
of the vortex center appears to be initiated as a result 
of tilt in the vortex axis through the mechanism of self- 
interaction. As observed earlier, the interaction terms 
in eq (9) do not contribute to  the movement of a single 
vortex so long as the axis of the vortex remains vertical 
from lower layer to upper layer. As soon as a small tilt is 
introduced in the vortex axis, the upper part of the vortex 
interacts with the lower part and this, combined with the 
influence of the steering current, generates trochoidal 
motion along the direction of the steering current. 
In  his classical work Yeh (1960) considers the influence of 
a basic flow arid the Coriolis force and obtains a period 
of the order of 2-3f: days for the motion of a hurricane 
vortex; however, his mechanism seems inadequate to  
explain the smaller scale motion as suggested by Senn. 
More recently, Kuo (1969) has studied the motion of 
vortexes in shear flow and friction in an attempt to 
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explain the motion of rotating thunderstorm cells and 
tornadoes. According to Kuo, the trochoidal motion is 
created by the interaction between the circulation of the 
vortex and the mean current and is superimposed upon 
the mean path. Our study suggests the mechanism of 
self-interaction as a means of explaining the trochoidal 
motion of a large hurricane vortex. 

4. EXPERIMENTS USING REAL DATA 

To test the applicability of this model, some prelim- 
iminary calculations were made using data from the 
routinely available Northern Hemisphere historic map 
series for sea level and the 500-mb level to represent the 
lower and the upper layers, respectively, in the model. 
The parameters ,.I: and ,.I: were evaluated using a mean 
value off  and representative values of h;, A:, and Ap/pI. 
The value of Ap/pl was taken as and the equilibrium 
depths h': and h: were taken as 3 km each. The strength 
of an individual vortex defined in terms of a representative 
area and vorticity was estimated subjectively from the 
map series at  both sea level and the 500-mb level. The 
locations of the vortex centers as given in the Northern 
Hemisphere historic map series at  the two levels were 
taken as the initial positions of the vortexes. By drawing 
quasi-circular isolines, the limit of the circulation was 
determined subjectively for each vortex. An average 
vorticity field was likewise estimated. The subjective 
but judicious placing of the centers of the lower and upper 
vortexes in some instances resulted in imparting slight 
tilts to the vortexes. Further, the vortex strength was 
generally found to be smaller at  the upper level; the 
strength was assumed to  remain constant throughout the 
integration period. Several case studies were made to  
study the displacements of tropical cyclones surrounded 
by other cyclonic and anticyclonic vortexes. Using a maxi- 
mum time step of 20 min, predictions were initially made 
for up to  24 hr in advance and were extended to 48 hr in 
some cases. We present below the results of a case study 
involving multiple vortexes over the North Atlantic 
Ocean to illustrate the typical patterns of tropical cyclone 
predictive and verifying displacements obtained by this 
model. 

Figure 5 shows schematically the positions of some 
lorn- and high-pressure centers over the North Atlantic 
Ocean for 0000 GMT, Sept. 11, 1961. Only a portion of the 
North Atlantic Ocean is included on a Mercator projection; 
for convenience the latitudes and longitudes of the low- 
and high-pressure centers are also given. Since the main 
interest in this study is the comparison between observed 
and predicted displacements for a pair of tropical cyclones, 
no synoptic maps are presented here. The observed 24-hr 
displacements of the tropical cyclones, Ll and L,, are 
shown by solid arrows. In  the first step, we considered 
only the interaction between the tropical cyclones L1 and 
L,. The model with two vortexes (n=2) in each layer 
produced the well-known cyclonic rotation as shown by 
the dashed arrows, Fl. (All the predicted displacements 
F,, F,, etc., are shown by smoothed trajectories.) In  the 
second step, the subtropical high-pressure cells HI and 

FIGURE 5.-Twenty-four-hr observed (solid arrows) and predicted 
(dashed arrows) displacements of the tropical cyclones L, and Lz. 
Predicted displacements are obtained after considering the influ- 
ences of various combinations of surrounding vortexes. See text 
for details. 

H2 were included in the calculation. The number of 
vortexes in each layer became four. The resulting dis- 
placements of the binary tropical cyclones are shown 
by the dashed arrows, Fz. It can be readily seen that, 
by including HI and H2, the model produced improved 
predictions, especially for the tropical cyclone L,. In  the 
third step, the model took into account the influence of the 
tropical cyclone L3. The number of vortexes now became 
five and the resulting displacements for L, and L, are 
shown by the dashed arrows, F3. An improved prediction 
resulted for L1 and the deviation between the observed 
and the forecast displacement increased for L,. Finally, 
we considered the influence of the low-pressure cell Lq 
that was embedded in the westerlies. The model, now 
using six vortexes in each layer, obtained the predicted 
displacements for L, and L, as shown by the dashed 
arrows, F,. 

These results demonstrate, very generally, how the 
inclusion of surrounding vortexes influences the predicted 
movement of a binary vortex system. In  particular, it is 
interesting to  note the influence of the subtropical high- 
pressure cells (ETl and H,) and the rapidly moving mid- 
latitude system (L4) on the predicted movement of the 
binary system. These results also suggest an explanation 
as to  why the cyclonic rotation of a simple binary tropical 
vortex system, calculated from elementary hydrody- 
namical considerations, is often not well observed. From 
our case studies over the North Atlantic Ocean, we find 
that the inclusion of the semipermanent high-pressure 
cells, as well as the midlatitude low-pressure cells, is es- 
sential for improved predictions of both binary and single 
vortex systems. 

5. CONCLUDING REMARKS 

The short-term displacements of tropical votexes due 
to mutual interaction was studied with the aid of a two- 
layer discrete vortex model. Employing some analytical 
data, we studied the patterns of motion for both binary 
and single tropical vortex systems. We found that the 
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individual vortexes exhibited a variety of complex tra- 
jectories depending on their strengths, slopes of their 
axes with height, and stability parameters. Of interest in 
this study was the utilization of a self-interaction concept 
that enabled the upper part of a tilted vortex to interact 
with its lower part. The observed short-period oscilla- 
tions of the surface trajectory of a tropical cyclone could 
be explained to a reasonable extent using this concept. 

Several case studies of the movements of multiple 
vortexes over the North Atlantic for a period of 24 to  48 
hr were made using this model. The results illustrated, 
among other things, how the well-known cyclonic rotation 
of a binary vortex system experiences a modification due 
to the presence of (other) surrounding vortexes. 

In this model, we assumed the strengths of the vortexes 
to remain constant during the forecast period; we also 
assumed the presence of a uniform steering current. We 
are currently modifying the equations to include energy 
sources and sinks and accordingly to let the strengths of 
the vortexes vary during the forecast period. We also 
intend to study the effect of shear flow on vortex motion. 

APPENDIX: DERIVATION OF STREAM FUNCTIONS 

Consider eq (3) and (4) of the text. Subtract eq (4) from 
eq (3) to obtain: 

This is a Melmholtz-type equation the solution of which 
can be written as: 

Here, H‘,” is the Hankel function of zero order. Next, 
multiply eq (3) by pi  and eq (4) by p; and add to  get: 

This is a Poisson-type equation the solution of which is 
given by: 

1 m  1 . n  

From eq (10) and (ll), we can write solutions for the 
stream functions and +z as given in the text. 
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